Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 4th World Congress and Exhibition on Antibiotics and Antibiotic Resistance Barcelona, Spain.

Day 2 :

Keynote Forum

Marek Malecki

Phoenix Biomolecular Engineering Foundation, USA

Keynote: HIV universal vaccine

Time : 09:30-10:30

Conference Series Antibiotics 2018 International Conference Keynote Speaker Marek Malecki photo
Biography:

Marek Malecki, M.D., Ph.D., is President of the Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA, and Principal Investigator on the Program Project, at the National Institutes of Health, Bethesda, MD, USA. He is a physician specialized in Oncology. He is a Visiting Professor at the University of Wisconsin, St James School of Medicine, and Medical Center for Postgraduate Training of Physicians, while teaching Oncology, Pharmacology, and Pharmacogenetics/Pharmacogenomics. He was elected by the faculty and students to the Rho Chi Honor Society for Excellence in Teaching and as the Faculty Role Model. Professor Malecki is the Editor-in-Chief of Journal of Stem Cell Research and TherapyJournal of Genetic Syndromes and Gene TherapyBritish Journal of Biotechnology, Section Editor at the Clinical and Translational Medicine, and Editor in Frontiers in Genetics, Frontiers in Bioengineering and Biotechnology, Journal of Cancer research and Therapy. He is a member of American Medical Association and American Society for Medical Genetics.

Abstract:

For many deadly viruses, there are no preventive and/or therapeutic vaccines approved by health authorities’ world-wide (e.g., Human Immunodeficiency Virus). But for some viruses prophylactic vaccines are very effective (e.g. Hepatitis B Virus). In this realm, we design, manufacture, test, and streamline in to the clinics novel viral universal vaccines (VUV). VUV have such unique features, that medical vaccination or natural infection induced immunity against some viruses (e.g., Hepatitis B Virus or Human Papilloma) upon the VUV’s administration to the infected with other, different viruses patients, is redirected against these other, newly infecting viruses (e.g., Influenza Virus). In this realm, we have bio-molecularly engineered human immunodeficiency virus universal vaccines (HIVUV). As per the Institutional Review Board approval and in compliance with the Declaration of Helsinki, all healthy donors and patients were presented with the Patients’ Bill of Rights and provided Patient Informed Consent. All the procedures were pursued by the licensed medical doctors (MDs). By flow cytometry, immunoblotting, and nuclear magnetic resonance, we have demonstrated high efficacy of HIVUV to engage HBV immunized patients’ immune system against HIV. Administration of HIVUV to blood or lymph of the HIV+ patients resulted in rapid reduction of the HIV viremia down to undetectable. It also resulted in protection of populations of CD4+ cells against HIV cytopathic decline.

Keynote Forum

Frederic J Deschamps

University Hospital of Reims, France

Keynote: Vaccinations in working populations

Time : 09:40-10:20

Conference Series Antibiotics 2018 International Conference Keynote Speaker Frederic J Deschamps photo
Biography:

Frederic J Deschamps is a Medical doctor (Lille- France University in 1990). He completed his PhD in Occupational Toxicology in 1993. He was nominated Professor of Medicine in 2002. In the last 20 years he has improved the Department of Occupational Diseases of the University Hospital of Reims (Champagne County). From 1995, he manages the Regional Institute of Occupational Health. He belongs to the French National University College of Occupational Researches and Practioners. He has focused his work an occupational infectious diseases and health effects of low doses toxics with long term exposure.

Abstract:

Vaccinations are the key of current prophylactic measures for occupational risks. It concerns mainly hepatitis B, but also other vaccinations: diphtheria, polio, tetanus, flu. Few of those are actually important to protect determined groups of workers who could be exposed to infections in relationship with their jobs. Studies concerning the assessment of prevalence for vaccination’s coverage were conducted among a miscellaneous population of workers. The knowledge and the behaviors of workers towards vaccinations were also overseen. Low adherences to vaccinations, including for the high occupational risk exposure groups, were found. Only few workers stated that vaccinations are effective and safe, therefore positively associated with willingness to be vaccinated. Despite recommendations, the widespread use of vaccines in the working population clearly postpones the vaccines intakes. It seems desirable to promote a list of mandatory vaccinations regarding to job practices. Education about vaccinations to workers will also improve their behaviors towards its coverage.

Keynote Forum

Roberto Grau

Universidad Nacional de Rosario, Argentina

Keynote: Metal nanoparticles as a novel tool to fight microbial biofilm development and antibiotic-resistance emergency

Time : 14:00-14:20

Conference Series Antibiotics 2018 International Conference Keynote Speaker Roberto Grau photo
Biography:

Roberto Grau completed his PhD from National University of Rosario in Argentina and obtained his Post-doctoral studies from The Scripps Research Institute (TSRI), Department of Experimental Medicine at San Diego, California, USA. He is a Pew Latin American Fellow (San Francisco, USA), a Fulbright International Scholar (Washignton DC, USA) and the Director of the Molecular Microbiology and Environmental Science Laboratory of the National Council of Scientific Research of Argentina (CONICET). He obtained many national and international awards, and published more than 30 papers in reputed journals.

Abstract:

Biofilms are three-dimensional structures that contains billions of genetically identical bacteria imbibed in a self-produced extracellular matrix, which shelter them from antibiotics. More than 85% of chronic and/or recurrent human infections are linked to bacterial biofilms, and every day the microbicide arsenal against them becomes more limited. Accordingly, nano-material science engineering is emerging as a promising alternative for reducing bioburden in healthcare facilities. Here, we present a novel TiO2-coated copper and silver nanoparticles (CuNPs and AgNPs, respectively) with enhanced photocatalytic and antibacterial properties. The activity of CuNPs and AgNPs (MNPs) was measured against planktonic and sessile forms of the relevant cystic-fibrosis related Pseudomona aeruginosa (CFPA) and methicillin-resistant Staphylococcus aureus (MRSA). The planktonic and sessile growth (measured as the final cellular yield at 600 nm and crystal violet staining, respectively) of both pathogens was severely inhibited by submillimolar concentrations of MNPs (95% of growth inhibition, p<0.01). The anti-biofilm effect was exerted at a genetic level as revealed by the downregulated expression produced by the MNPs on transcriptional β-galactosidase and gfp-fluorescence reporter fusions to genes involved in an extracellular matrix synthesis. MNP-treatment of pre-formed CFPA and MRSA biofilms dramatically accelerated their dissembling and cellular death without dispersal cell formation. Interestingly, the emergency of MNP-resistant CFPA or MRSA after two-weeks treatment with sub-MIC concentrations of the microbicide was significantly lower (p<0.01) than the emerged resistance after bacterial treatment with clinical antibiotics. The importance of the MNP treatment adoption as a safe alternative for reducing pathogenic bioburden will be presented.

Keynote Forum

María Rosa Chaig

Bioquímica y Biología Molecular, Argentina

Keynote: Aminoglycoside antibiotics and hearing loss

Time : 11:20-12:00

Biography:

Abstract:

Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. As part of genetic screening program for hearing loss, we studied 40 patients with sensorineural deafness, whose cause might have been after aminoglycoside (ATB-AG), treatment. The affected and control subject's DNA fragments spanning the 12S rRNA gene or tRNASer(UCN) gene, that are associated with both aminoglycoside-induced and non-Syndromic hearing loss, were amplified and studied by PCR-RFLP. Three families have the homoplasmic 7444G> A mutation in the tRNAser (UCN) gene, the analysis of the mitochondrial genome in three family members did not detect any other pathology mutation. The clinical history shows one syndromic phenotype for matrilineal family. In the first family the muscle biopsy findings in the proband (III-5) and her mother (II- 5), show in the electronic microscopy (EM) and in the light microscopy (LM) multiple mitochondrial abnormalities in the striated muscle. These findings have been correlated with the values from Citocromo Oxidase/Citrate Synthase ratio, which indicated poor activity of the Citocromo Oxidase. The matrilineal pedigree clinical feature, and the molecular, biochemical and morphological studies, might indicate that this is a novel syndromic presentation of the 7444G>A mutation in Córdoba - Argentina. In the fourth family, the report of the clinical, genetic, and molecular characterization in two of their members, revealed the variable phenotype of hearing impairment including audiometric configuration. Mutational analysis of the mtDNA in these pedigrees showed the presence of non syndromic homoplasmic 12S rRNA A827G mutation, which has been associated with hearing impairment. The A827G mutation is located at the A-site of mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. Although the 827A> G mutation in the 12S rRNA, is associated with haplogroup B, its prevalence ≥ 2%, does not eliminate its participation and association to ototoxicity by ATB-AG. In addition, it is necessary to know more about the mechanism by which ATB-AG induces hearing loss, in the presence of the 7444 G>A mutation in the tRNAser (UNC).