Call for Abstract

9th World Congress and Exhibition on Antibiotics and Antibiotic Resistance, will be organized around the theme “Current Research: Tackling Antibiotic Resistance and COVID-19”

Antibiotics 2022 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Antibiotics 2022

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Antibiotics are a type of antimicrobials that are used in treatment and prevention of bacterial infections. They may kill or inhibit the growth of bacteria. Many antibiotics are also effective against protozoans and fungi; some are toxic to humans and animals also, even when given in therapeutic dosage. Antibiotics are not effective against viruses such as common cold or influenza, and may be harmful when taken inappropriately. Physicians must ensure the patient has a bacterial infection before prescribing antibiotics.

Antibiotic resistance invoke especially to the resistance to antibiotics that occurs in common bacteria that cause infection. The easy approach and capability of Antibiotics led to overuse in live-stock raising promotes bacteria to flourish resistance. This led to comprehensive problems with antibiotic resistance. World Health Organization (WHO) classified antimicrobial resistance as a serious hazard and no longer a indicator for the future.  Antibiotic resistance is now among every part of the world and its stirring everyone irrespective to the age. When infections become resistant to first-line drugs, more costly therapies must be used. A longer duration of illness and treatment, often in hospitals, increases health care costs as well as the financial burden on families and societies. To help prevent the development of current and future bacterial resistance, it is essential to prescribe antibiotics according to the principles of antimicrobial stewardship, such as specify antibiotics only when they are needed. 

Certain bacterial infections now oppose all antibiotics. The resistance problem may be reversible, but only if society begins to acknowledge how the drugs affect "good" bacteria as well as "bad". Historically, most antibacterials were used in hospitals, where they were integrated into surgical clothes and soaps to limit the spread of infection. More recently, however, those substances (including  triclosan, triclocarbon and such quaternary ammonium compounds as benzalkonium chloride) have been mixed into lotions, dish-washing detergents and soaps meant for general consumers. They have also been impregnated into such items as cutting boards, toys, high chairs and mattress pads. 

Antibiotics are also noted as antibacterials, are types of medications that destroy or slow down the growth of bacteria. Alexander Fleming discovered first penicillin, the first chemical compound with antibiotic properties. Some of the common antibiotics are Aminoglycosides, Cephalosporins, Carbapenems, Macrolides, Penicillin, Quinolones, Sulfonamides and, Tetracyclines etc. General fundamentals of antibiotic prescribing are use: First-line antibiotics first, Reserve broad spectrum antibiotics for marked circumstances only, prescribe antibiotics for bacterial infections if Symptoms are significant or severe.

Choice of relevant antibiotics is presently based on individual patient need.  Preservation of bacterial sensitivity needs perceptive of how antibiotics select resistance. ‘Ten commandments’ which might be considered carefully when a preference has to be made for antibiotic prescribing.  The compelling importance of the fact that all healthcare personnel should take ownership of the need to specify accordingly and to practice effective infection control.  A realization that antibiotics may not be competent for the tasks required of them and eventually, with widespread resistance, may be incapable of the task they do today.

Antibiotics are amidst the most regularly recommended medications in modern medicine. Antibiotics are useless against viral infections. When you take antibiotics, follow the guidelines carefully. It is important to finish your medicine even if you feel improved. If you stop treatment too soon, some bacteria may survive and re-infect you. Do not save antibiotics for later or use someone else's prescription

Antimicrobial prophylaxis is generally used by clinicians for the prevention of numerous infectious diseases. Optimal antimicrobial agents for prophylaxis should be nontoxic, inexpensive, bactericidal and active against the typical pathogens that can motive surgical site infection postoperatively. To maximize its effectiveness, intravenous perioperative prophylaxis should be carried out within 30 to 60 minutes before the surgical incision. Antimicrobial prophylaxis should be of short time to downturn toxicity and antimicrobial resistance and to reduce cost.

 

Antibiotics are frequently recommended during pregnancy. The specific medication must be chosen carefully, however. Some antibiotics are prescribed to take during pregnancy, while others are not. Safety depends on various factors, including the type of antibiotic, when in pregnancy you take the antibiotic, how much you take and for how long. Antibiotics normally advised safe during pregnancy:  Ampicillin, Amoxicillin, Clindamycin, Erythromycin, Penicillin, Nitrofurantoin. Despite there's no direct clue that these antibiotics cause birth defects, additional research is needed. In the interim, use of these medications is still assured in some cases.

Antibiotics must be used accordingly in humans and animals because both uses share to the emergence, persistence, and escalation of resistant bacteria. Resistant bacteria in food-producing animals are of particular concern. Food animals play as a source of resistant pathogens and resistance mechanisms that can directly or indirectly result in antibiotic resistant infections in humans. Resistant bacteria may be transmitted to humans through the foods we eat. Some bacteria have turned resistant to more than one sort of antibiotic, which makes it more difficult to treat the infections they cause. Sustaining the efficiency of antibiotic drugs is vital to insulating human and animal health.

In the prior most drugs have been invented either by identifying the active ingredient from traditional remedies or by serendipitous discovery. A new access has been to recognize how disease and infection are controlled at the molecular and physiological level and to mark specific entities based on this knowledge. The process of drug discovery involves the identification of candidates, characterization, screening, synthesis, and assays for therapeutic efficacy. Evolution of an existing drug molecule from a ordinary form to a novel delivery system can significantly improve its performance in terms of patient compliance, efficacy and safety. These days, drug delivery companies are engaged in the development of numerous platform technologies to get ambitious advantage, extend patent life, and increase market share of their products. Formerly a compound has displayed its value in these tests; it will begin the process of drug development prior to clinical trials.

New diseases are originating globally and old diseases are re-emerging as Infectious agents evolve or spread, and as changes occur in conservation, socio-economic conditions, and population patterns. Likewise, many diseases thought to be decently controlled appear to be making a revival. In developed countries, public health measures such as sewage treatment, vaccination programs, sanitation and access to good medical care-including a wide range of antibiotics-have virtually disposed “traditional” diseases such as tuberculosis, diphtheria and whooping cough

Environmental microbes are a leading source of drug discovery, and several microbial products ( anti-tumour products, antibiotics, immunosuppressants and others) are used frequently for human therapies. Most of these products were accessed from cultivable (<1%) environmental microbes, means that the large number of microbes were not targeted for drug discovery. With the onset of new and emerging technologies, we are poised to harvest novel drugs from the so-called 'uncultivable' microbes. Multidisciplinary way of linking different technologies can assist and reform drug discovery from uncultivable microbes and inspect the current cramp of technologies and scenario to swamped such constraints that might further expand the promise of drugs from environmental microbes


Prescribing doctors are, progressively, using clinical trial data as a major source of information for evidence-based medicine for the remedy of infectious diseases, as in other clinical disciplines. However, it may be difficult to excerpt from these data the material that is needed for the management of the individual patient. At the same time, clinical trial testimony have been used, probably satisfactorily, in the process of drug registration, and the pharmaceutical industry has spent progressively large amount of money to satisfy the needs of this process. In the face of all these problems, switch in the way antibiotic clinical trials are designed and performed are clearly necessary, although this must not disturb the balance so far as to restore them less useful for those who currently derive greatest benefit from them.


Antibacterial action customarily falls within one of four mechanisms, three of which involve the inhibition or regulation of enzymes tangled in cell wall biosynthesis, nucleic acid metabolism and repair, or protein synthesis, respectively. The fourth mechanism associates the interruption of membrane structure. Many of these cellular functions targeted by antibiotics are most effective in multiplying cells. Since there is often overlap in these functions between eukaryotic mammalian cells and prokaryotic bacterial cells, it is not surprising that some antibiotics have also been found to be useful as anticancer agents.

Regulatory affairs (RA), are also called as government affairs, is a profession within regulated industries, such as medical devices, pharmaceuticals etc. Regulatory affairs also have a very specific meaning within the healthcare industries (medical devices, functional foods, biologics and pharmaceuticals). Regulatory affairs (medical affairs) professionals (aka regulatory professionals) generally have the duty for the following general areas: Ensuring that the companies obey with all of the regulations and laws pertaining to their business

The global antibiotics market was valued at $39.6 billion in 2013 and is expected to reach $41.2 billion by 2018, at a CAGR of 0.8%. From, 2005 this market is seen to grow at an annual rate of 6.6% until 2011. There are many companies producing antibiotics these days and there are many other antibiotics present in the market such as aminoglycoside antibiotics and it cap around 79% of the global demand. Moreover, the other antibiotics such as penicillin have 8%, streptomycin 1%, chloramnphenicol 1 %, tetracyclines 4%, erythromycin has 7%, market.